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Summary

Following theemergence of a novel coronavirus (SARS2) and its spread ostdeof China, Europe

is now experienéng large epidemics. In response, many European countries have implemented
unprecedented nofpharmaceutical interventiongicluding case isolation, theoslure of schools and
universities, banning of mass gatherings and/or public events, and most receitscale social
distancing including local and national lockdowns

In this report,we use a seminechanistic Bayesian hierarchical mottehttempt to infer the impact
of these interventionsacross11l Europeancountries. Our methods assume that changes in the
reproductive number, a measure of transmissicrare animmediateresponse to theseterventions
being implemented rather than broader gradual changes in behaviour. Our nestiaiatesthese
changes by calculating backwards from tleathsobserved over timéo estimate transmission that
occurred several weeks priallowing forthe time lag between infection and death

One of the key assumptions of the model is tlegtch intervention ha the same effect on the
reproduction numbemcross countries andver time. This allows us teveragea greater amount of

data across Europm® estimate these effectdt alsomeans that our results are driven strongly by the
data from countries with more advanced epidemics, and earlier interventions, such as Italy and Spain.
We find that theslowinggrowth in daily reported deaths in Italy is consistent with a significant impact

of interventions implemented several weeks earlién Italy, we estimate that the effective
reproduction numberR, dropped to close to 1 around the time of lockdown (11th Mayeltthough

with a high level of uncertainty.

Overall, we estimate that countries have managed to reduce their reproduction nunther
estimates have wide credible intervaéd contain 1for countries thathave implemented all
interventionsconsidered in our analysi§hismeans that the reproduction number may be above or
below this valueWith current interventions remaining in place to at least the end of March, we
estimate that interventions across all 11 countries will have averted B9ga@ths up to 31 March
[95% credible interval 2000-120,000]. Many more deaths will be averted through ensuring that
interventions remain in place until transmission drops to low lewals. estimate that, across all 11
countriesbetween? and43 millionindividuals have been infected with S3@®o\/2 up to 28th March,
representingoetween1.88%and11.43%0f the population. The proportion of the population infected
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to date¢ the attack rate- is estimated to be highest in Spain followed by Italy and lowest in Germany
and Norway, reflecting the relative stages of the epidemics.

Given the lag of -8 weeks betweenvhen transmissiohangesccurandwhentheir impactcan be
observed in trends imortality, for most of the countries considered here it remains too early to be
certain that receninterventionshave been effectivdf interventions in countries at earlier stages of
their epidemic, such as Germany or the UK, are more or less efféutinehey were in the countries
with advanced epidemicen which our estimates are largely basedif interventions have improved

or worsened over time, then our estimates thie reproduction number andleaths avertedvould
change accordinglyt is therefore critical that the current interventions remain in place and trends in
cases and deaths aosely monitored in the coming days and weeks to provide reassurance that
transmission of SARSow2 isslowing
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1 Introduction

Following the emergence of a novel coronavirus (SB&&) in Wuhan, China in December 2019 and

its global spread, largepidemics of the diseaseaused by the virusesignatedCOVIEL9, have
emergedin Europe. In response to the rising numbers of cases and deathgpamaintain the
capacity of health systems to treat as many severe cases as possible, European countries, like those in
other continents, have implemented or are in the process of implementing measures to cibtirol
epidemics.These largescale norpharmaceuticainterventions vary between countries but include
social distancing (such as banning large gatherings and advising individualssoctalizeoutside

their households), border closures, school closures, measures to isolate symptomatic individuals and
their contacts, and largecale lockdowns of populations with all but essential internal travel banned.
Understandindirstly, whether these interventions are having the desired impact of controlling the
epidemic and secondly, which interventions are necessarmaintain controljs criticalgiven their

large economic and social costs.

The key aim of these interventions is to reduce éffectivereproduction numberY , of the infection,

a fundamental epidemiological quantity representing the average numbief@ttions at timeQper
infected case over the course of their infectionYlfismaintained at less than 1, the incidence of new
infections decreases, uttiately resulting in control of the epidemic. ™ is greater than 1lthen
infections will increase (dependent on how much greater than 1 the reproduction number is) until the
epidemic peaks and eventualliieclinesdue to acquisition of herd immunity.

In China, strict movement restrictions and other measures including case isolation and quarantine
began to be introduced from 23rd January, which achieved a downward trend in the number of
confirmed new cases during February, resulting in zero new confimtgienous cases in Wuhan by
March 19th. Studies have estimated hdivchanged during this time in different areas of China from
around 24 during the uncontrolled epidemic down to belowwvtith an estimated P fold decrease

in the number of daily contacts per perséhControl measures such as social distancing, intensive
testing and contact tracing in other countries such as Singapore and South Korea have successfully
reduced case incidence in recent weeks, although there is a risk the Viirapr@ad again once control
measures are relaxett.

The epidemic began slightly later in Europe, from January or later in different réglanstries hae
implemented different combinations of control measures and the level of adherence to government
recommendations on social distancing is likely to vary between countries, in part due to different
levels of enforcement.

Estimating reproduction numbers fGARE0V2 presents challenges due to the high proportion of
infections not detected by health systet?s and regular changes in testing policies, resulting in
different proportions of infections being detected over time and between countMesst countries

so far only havehe capacity to test a small proportion of suspected cases and tests are reserved for
severely ill patients or for highisk groups (e.g. contacts of cases). Looking at case thaefore,

gives a systematically biased view of trends.

An alternative way to estimate the course of the epidemic is to lmadkulate infections from
observed deaths. Reported deaths are likely to be more reliable, although the early focus of most
surveillance syems on cases with reported travel histories to China may mean that some early deaths
will have been missed. Whilst the recent trends in deaths will therefore be informative, there is a time
lag in observing the effect of interventions on deaths since aéhisra 23-week period between
infection, onset of symptoms and outcome.
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In this report, we fit anovelBayesian mechanistic model of the infection cycle to observed deaths in
11 European countries, inferring plausible upper and lower bo(Bdgesianmedible intervalspf the

total populations infectedattack rates) case detection probabilities, and the reproduction number
over time R). We fit the model jointly to COVAL® data fromall these countries to assess whether
there is evidence that interventions have so far been successful at rede@epw 1, with the strong
assumption that particular interventions are achieving a similar impact in different couatriethat

the efficacyof those interventions remains constant over timEhe model is informechore strongly

by countries with larger numbers of deaths and which implemented interventions earlier, therefore
estimates of recentR in countries with more recent interventions areontingent on similar
intervention impacts. Data in the coming weeks will enable estimationoohtry-specificR with
greater precision.

Model and data details are presented in the appendix, validation and sensitivity are also presented in
the appendixand general limitations presented below in the conclusions.

2 Results

The timing of interventions should be taken in the context of when an indivichuaitré @g@idemic
started to grow along with the speed with which control measures were implemented. Italy was the
first to begin intervention measures, and other countries followed soon afterwdfiggi(el). Most
interventions began around 12th4th March. We analyzed data on deaths up &' #arch, giving a
2-3-week window over which to estimate the effect of interventions. Currently, most countries in our
study have implemented all major nggharmaceutical interventions.

For each country, we model the number of infections, the number of deaths,Yanithe effective
reproduction number over time, witty changing only when an interventionirgroduced Figure2-
12). 'Y is the averagenumber of secondaryinfections per infected individual assuming thathe
interventions hat are in place at timéstay in placghroughout their entireinfectious period Every
country hasits own individual starting reproduction numbefY before interventions take place.
Specific interventions are assumed to have the sashativeimpacton'Y in each country when they
were introduced thereand are informed by mortality data acroaicountries
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Figurel: Intervention timings for the 1BEuropean countries included in the analyS@rfurther
details £e Appendix8.6.

2.1 Estimated true numbers of infections and current attack rates

In all countrieswe estimate there are orders of magnitude fewefectionsdetected(Figure 2 than
true infections mostly likely due to mild and asymptomatic infectionsaas well as limited testing
capacity In ltaly, our results suggest thatumulatively 5.9 [1.9-15.2] million people have been
infected as of March&bh, giving an attack rate &.8%][3.2%-25%]of the population(Tablel). Spain
has recentlyseen a large increase in themberof deaths andgiven its smaller populatiomur model
estimates thata higher proportion of the population, 15.0¢4.0 [1.8-19] million people) have been
infectedto date. Germanyis estimated to havene of the lowestttackratesat 0.7% with 600,000
[240,000-1,500,00Q people infected.
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Tablel: Posterior model estimates of percentage of total population infected as of 28th March 2020.
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Country % of total population infected (mean [95% credible interval])
Austria 1.1% [0.36%3.1%]
Belgium 3.7% [1.39%9).7%)]
Denmark 1.1%]0.40%3.1%]
France 3.0% [1.1%.4%)]
Germany 0.72% [0.28%..8%)]
Italy 9.8% [3.2%426%)]
Norway 0.41% [0.09%..2%)]
Spain 15% [3.7%41%)]
Sweden 3.1% [0.859%8.4%]
Switzerland 3.2% [1.3%.6%)]
United Kingdom 2.7% [1.2%.4%)]

2.2 Reproduction numbers an@mpactof interventions

Averaged across all countries, we estimatigial reproduction numbers of around 3.87 [3.@166],
which is in line with otheestimates'® These estimates are informed by our choice of serial interval
distribution and the initial growth rate of observed deatAsshorter assumederil interval resukin
lower starting reproduction numbers(Appendix8.4.2 Appendix8.4.6. The initial reproduction
numbers are alsoncertain due tga) importation being the dominant source of new infections early
in the epidemic, rather thatocal transmission (b) possible une&scertainment in deaths particularly
before testing became widespread.

We estimate large changes'¥ in response tdhe combinedhon-pharmaceuticalnterventions. Our
results, which are driven largely bguntries with advanced epidemics and larger numbers of deaths
(e.g. ltaly, Spain)suggest that these interventions ¥ together had a substantialimpact on
transmission, as measured blianges irthe estimatedreproduction numberR. Acrossall countries
we find current estimates of Rt to range from a posterior mean of (09¥4-2.14] for Norwayto a
posterior mean of 2.6{11.40-4.18]for Swedenwith an average of 1.43 across the 11 country posterior
means a 64%reductioncompared to the préntervention valus. We note thattheseestimatesare
contingent on intervention impact being the sarmedifferent countries and at different time all
countries but Swedenynder the sameassumptiors, we estimate thatthe current reproduction
numberincludesl in the uncertainty rangé.heestimated reproduction numbeor Swederishigher,

not because the mortality trends are significantly different from any other coubtriyas anartefact

of our nodel, which assumes a smaller reductiorRitbecause no full lockdown has been ordered so
far. Overall,we cannot yet concluderhether current interventions are sufficient to driv¥ below 1
(posterior probability of being less than 1.0 is 44% on average across the couMfesgyre also
unable to concludevhether interventions may bdifferent between countries or over time

There remains a high level of uncertainty in these estiggatt is too early to detect substantial
intervention impact irmanycountries at earlier stages of their epidemic (e.g. GermanyNdiwvay).

Many interventions have occurred only recently, and their effects have not yet been fully observed
due to thetime lag between infection and death. This uncertainty will reduce as more data become
available. For all countries, our model fits observed deaths data well (Bayesian goodness of fit tests).
Wealsofoundthat our model can reliably forecast daily deahdays into the futurgby withholding

the latest 3 days of datand comparing model predictions to observed dedthppendix8.3).

The close spacingf interventions in time mde it statistically impossible to determine which had the
greatest effect(Figurel, Figure4). However, when doing a sensitivity analysis (Appe8di3 with
uninformative prior distributions (where interventions can increase deaths) we find simitgct of
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interventions which shows that outchoice of prior distribution is not driving the effects we see in the
main analysis.
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Figure2: Countrylevel estimates of infections, deaths andLBft: daily number of infections, brown

bars are reportednfections, blue bands are predicted infections, dark blue 50% credible interval (Cl),
light blue 95% CThe number of daily infections estimated by our model drops immedadtelyan
intervention, as we assume that all infected people become immegliates infectious through the
intervention. Afterwards, if the Rt is above 1, the number of infections will starts growing again.
Middle: daily number of deaths, brown bars are reported deaths, blue bands are predicted deaths, Cl
as in left plot Rght: time-varying reproduction numbef< dark green 50% ClI, light green 95% CI.

Icons are interventions shown at the time they occurred.
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Table2: Totalforecasted deathsince the beginning of thepidemicup to31 Marchin our model
and in acounterfactualmodel(assuming nantervention had taken pladeEstimatedaverteddeaths

overthis time periodas a result othe interventions Numbers in brackets are 95% credible intervals.

Observed Model estimated Zﬂsoticrj:;te q ZAsc:i(::;te q Model deaths
Deaths to 28th | deaths to 28th averted to 31
March March deaths to 31 deaths to 31 March
March March
Country (counterfactual .
(difference
model between
(observed) (our model) (our model) assuming no
. ) counterfactual
interventions TE AT
have occurred)
. 68 88 [57- 130] 140 [88-210] | 280 [140- 140 [34-
Austria
560] 380]
Beldium 289 310 [230-420] | 510 [370- 1,100 [590C 560 [160-

9 730] 2.100] 1,500]
Denmark 52 61 [38-92] 93 [58- 140] 160 [84- 310] | 69 [15-200]
France 1,995 1,900 [1,50G 3,100 [2,300 | 5,600 [3,60G | 2,500 [1,000

2,500] 4,200] 8,500] - 4,800]
325 320 [240-410] | 570 [400- 1,100 [570C 550 [91-
Germany
810] 2,400] 1,800]
9,136 10,000 [8,206 | 14,000 52,000 38,000
Italy 13,000] [11,000- [27,000- [13,000-
19,000] 98,000] 84,000]
16 17 [7-33 26 [11-51 36 [14- 81 9.9 [0.82-
Norway [7-33] [11-51] [14-81] [
38]
4,858 4,700 [3,700 7,700 [5,5006 | 24,000 16,000
Spain 6,100] 11,000] [13,000- [5,400-
44,000] 35,000]
Sweden 92 89 [61- 120] 160 [110- 240 [140- 82 [12- 250]
240] 440]
Switzerland 197 190 [140-250] | 310 [220 650 [330- 340 [71-
440] 1,500] 1,100]
United 759 810 [610- 1,500 [1,00G | 1,800 [1,20G | 370 [73-
Kingdom 1,100] 2,100] 2,900] 1,000]
All 17,787 19,000 [16,000 | 28,000 87,000 59,000
22,000] [23,000- [53,000- [21,000-
36,000] 140,000] 120,000]
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2.3 Estimated impact of interventions on deaths

Table2 showstotal forecasted deathsince the beginning of the epidemip to and includindg31
Marchunder ourfitted model and under theounterfactualmodel, which predicts what would have
happened ifno interventions were implemente¢andy 'Y i.e. theinitial reproduction number
estimated before interventions Again, the assumption in these predictions is that intervention
impact is the same across countries and tiffilee model without interveribns was unable to capture
recent trends in deaths in several countries, where the rate of increase had clearly slowed 8Figure
Trends were confirmed statisticallyy lBayesian leavene-out crossvalidation and the widely
applicable information criterion assessmetgVAIQ.

By comparing the deaths predicted under the modéh no interventiongo the deaths predicted in

our intervention model, we calculated the totdéaths averted up to the end of March. We find that,
across 11 countries, since the beginning of the epide&8€00 [21,000-120,000] deaths have been
averted due to interventions. In Italy and Spain, where the epidemic is advanced, 38,000 {13,000
84,000]and 16,000 [5,40@5,000] deaths have been avertegspectively Even in the UK, which is
much earlier in its epidemic, we predict 370 {Z900] deaths have been averted.

These numbers give only the deaths averted that would have occurred up to 31 .Nfasehwere to
include the deaths of currently infected individuals in both models, which might happen after 31
March, then the deaths averted would be substantially higher.

o : ; I
2 | a2 130 |
£
s 2009 | S |
- | S 1007 |
> ' - |
i | _ |
- 1oy I _ 5007 |
®© I © I
) ' ) '
04— - - - - 0 - el
¥ @ ¢ ¢ $ @ ¥ ¢
N NN P o P oD
(a) ltaly (b) Spain

Figure3: Daily number otonfirmeddeaths predictions(up to 28 March)and forecastgafter) for (a)
Italy and (b) Spaifrom ourmodelwith interventiongblue)andfrom the no interventions
counterfactual mode{pink} credible intervals areshown one week into the futur@ther countries
are shown in Append&6.
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Figure4: Our model includes five covariates for governmental interventions, adjusting for whether
the intervention was the first one undertaken by the government in response to -CQka) or

was subsequent to other interventions (green). Mean relative pesigenteduction in{ «S shown

with 95% posteriocredibleintervals. If 100% reduction is achievgde= 0 and there is no more
transmission of COVAI®. No effects are significantly different from any others, probably due to the
fact that many intervetions occurred on the same day or within days of each other as shown in
Figurel.

3 Discussion

During this early phase of control measures against the novel coronavirus in Eurcpeglyadrends

in numbers of deaths to assess the extent to which transmission is being reduced. Representing the
COVIEL9 infection process using a semechanistic, gint, Bayesian hierarchical model, we can
reproduce trends observed in the data deaths andcan forecast accurately over short time horizons.

We estimate that therdhave been manynore infections than are currently reported@he hgh level

of underascetainment of infections that we estimate here is likely due to the focus on testing in
hospital settings rather than in the communitespite thisonly a small minority of individuals in
each country have been infectedith an attack raten averagef 4.9% [L.9% 11%]Jwith considerable
variation between countriegTablel). Our estimates imply thathe populatiors in Europe ar@ot
close toherd immunity(~5075% if Ris 24). Further, withR values dropping substantially, the rate
of acquisition of herd immunity will slow down rapidihis implies that the virus will be able to spread
rapidly should interventions be liftecsuch estimatesf the attack rate to dateirgently need to be
validaed bynewly developedntibody testan representative populatiosurveysonce these become
available

We estimate that major nopharmaceutical interventionsavehad a substantial impact on the time
varying reproduction numbers in countries where there has been time to observe intervention effects
on trends in deaths (ltaly, Spain)attherencean those countries has changed since that initial period,
then our folecast of future deaths will be affected accordingly: increasing adherence over time will
have resulted in fewer deaths and decreasing adherence in more deaths. Similarly, our estimates of
the impact of interventions in other countries should be viewed wiltion if the same interventions

have achieved different levels atflherencethan was initially the case in Italy and Spain.

Due to the implementation of interventions in rapid succession in many countries, there are not
enough data to estimate the indidual effect size of each intervention, and we discourage attributing
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associations to individual intervention. In some cases, such as Norway, where all interventions were
implemented at once, these individual effects are by definition unidentifiabbspite this, while
individual impacts cannot be determined, thestimatedjoint impact is strongly empirically justified

(see AppendiB.4for sendtivity analysis)While the growth in daily deaths has decreasdde to the

lag between infections and deaths, continued riseddily deaths are to be expected for some time.

To understand the impact of interventions, we fitaunterfactualmodel without the interventions

and compare this to the actual model. Consider Italy and thetW& countries at very different stages

in their epidemics. For the UK, where interventions are very recent, much of the intervention strength
is borrowed from countries with older epidemics. The results suggest that interventions will have a
large impact onnfectionsand deaths despite counts of both rising. For Italy, where far more time has
passed since the interventions have been implementédjs clear that the modelwithout
interventionsdoes not fit well to the data, and cannot explain the duear (on the logarithmic scale)
reduction in deaths (seEigurel0).

The counterfactualmodel for Italy suggests that despite mounting pressure on health systems,
interventions have averted a health care catastrophe where the number of new deaths Wwawdd
been3.7 times higher 88,000deaths averted) than currently observed. Even in the tdich earlier

in its epidemic, the recent interventions are forecasted to agZf total deaths upto 31 of March

4 Conclusiomnd Limitations

Modern understanding of infectious disease withglobal publicized responshas meant that
nationwide interventions could be implemented with widespread adherence and support. Given
observed infection fatality réds and the epidemiology of COVIDB, major norpharmaceutical
interventions have had a substantial impact in reducingdraissiorin countries with more advanced
epidemics It is too early to be sure whether similar reductions will be seen in coundgtiesarlier
stages of their epidemidVhile we cannot determine which set of interventions have been most
successful, taken together, we can already see changes in the trends of new deaths. When forecasting
3 days andookingover thewhole epidemic the number of deaths averted is substaniiéé note that
substantial innovation is taking place, and new more effective interventions or refinements of current
interventions, alongside behavioral changes will further contribute to reductions in infectidfes.
cannot say for certain that the cumémeasures have controlled the epidemic in Eurdpawvever, if
current trends continuethere is reason for optimism

Our approach is seamechanistic. W@roposea plausible structuréor the infection process and then
estimate parameters empirically. oiever, many parameters had to be given strong prior
distributions or had to befixed. Forthese assumptionswe have provided relevant citations to
previous studies. Asiore data become available ametter estimates arisewe will update these in
weeklyreports. Qur choice of serial intervalistribution strongly influences the priadistribution for
starting Y . Qur infection fatality ratio, and infectionto-onsetto-death distributions strongly
influence the rate of death and hence the estimated number of true underlying cases.

We alsoassume that the effect of interventions is the same in all countries, which may not be fully
realistic.This assumptioimplies that counties with early interventions and more deaths since these
interventions (e.g. ItalySpain strongly influence estimates of intervention impact in countrés
earlier stages of their epidemieith fewer deaths (e.gGermany UK.

We have tried tocreate consistent definitions of all interventions and document details of this in
Appendix8.6. However, invariably there will be differences from country to couimrihe strength of

their interventiong for example, most countries have banned gatherings of more than 2 people when
implementing a lockdown, whereas in Sweden the government only banned gatherings of more than
10 people. These differences can skew intpda countries with very little data. We believe that our
uncertainty to some degree can cover these differences, and as more data become available,
coefficients should become more reliable.
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However, despite these strong assumptiptieere is sufficientignal in the data to estimate changes
in"Y (see thesensitivity analysis reported in Appen@ix.3 and this signal will stand to increase with
time. In our Bayesian hierarchical framewowe robusty quantify theuncertaintyin our parameter
estimatesandposterior predictionsThis can le seen in the very wideredibleintervals in more recent
days where little or no death dataare available to inform the estimated-urthermore, we predict
intervention impact at countryfevel, but different trends may be in place in different parts of each
country. For example, the epidemic in northern Italy was subject to controls earlier than the rest of
the country.

5 Data

Our mode utilizesdaily realtime death data from the ECDC (European Centre of Disease Control),
where we catalogue case data for 11 European countries currently experiencing the epidemic: Austria,
Belgium, Denmark, France, Germany, Italy, Norway, Spain, Sw8dézerland and the United
Kingdom. The EC[Opovidesinformation onconfirmed casesnd deaths attributable to COWD®.
However, the case datare highly unrepresentative of the incidence of infections due to
underreporting as well as systematic and courgpgcific changes in testing.

We, therefore,use onlydeaths attributable to COVHD9in our modej we do notuse theECDC case
estimates & all. While the observed deaths still have some degree of unreliability, again due to
changesn reportingand testing we believe the datare of sufficient fidelity to model. For population
counts we use UNPOP agratified counts'?

We also catalogue data dhe nature and type of major nepharmaceutical interventiondVe looked

at the government webpages from each country as well as their official public health
division/informationwebpages tadentify the latest advice/laws being issued by the government and
public health authorities. We collected the following:

School closurerdered This intervention refers to nationwide extraordinary school closures which in
most cases refer to both primary and secondary schoolsngdf®r most countries this also include

the closure of other forms of higher education or the advice to teach remotely). In the case of Denmark
and Swedenwe allowed partial school closures of only secondary schools. The date of the school
closure is taken to be the effective date when the schools started to be closed (if this was on a Monday,
the date used was the one of the previobaturdayss pupils ad students effectively stayed at home

from that date onwards).

Casebased measuresthis intervention comprises strong recommendations or laws to the general
public and primary care abouwelfisolation when showing COViD9-like symptoms. These also
include nationwide testing programs where individuals can be tested and subseqseitftiyolated

Our definition is restricted to nationwide government advice to all individuals#&yor to all primary
care andexcludes regional only advice. These doinctude containment phase interventions such
as isolation if travelling back from an epidemic country such as China.

Public eventdbanned This refers to banning all public events of more than 100 participants such as
sports events.

Social distancingnamouraged As one of the first interventions against the spread of ti@WD19
pandemic, many governments have published advice on social distancing including the
recommendation to work from home wherever possibikducing usef public transport and all other
non-essential contact. The dates used are those when social distan@sgofficially been
recommended by the government; the advice may includaintaininga recommendedohysical
distancefrom others

Lockdowndecreed There are several different scenarios that the media refers to as lockdown. As an
overall definition, we cosider regulations/legislations regarding strict fatceface social interaction:
including the banning of any nesssential public gatherings, closure of educational and
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public/cultural institutions, ordering people to stay home apart from exercise and essential tasks. We
include special cases where these am Bxplicitly mentionedon government websitebut are
enforced by the police (e.g. France). The dates used are the effective dates when these legislations
have been implemented. We note that lockdown encosgas other interventions previously
implemented.

First intervention:As Figurel shows, European governments have escalated interventions rapidly,
and in some examples (Norway/Denmark) have implemented these interventions all on a single day.
Therefore, given the temporal autocorrelation inherent in government intervention, we incdude
binary covariate for the first intervention, which can be interpreted as a government decision to take
major action to control COVADS.

A full list of the timing of thase interventions and the sourcege have usedan be found irA\ppendix
8.6.
6 Methods Summary

A visual summary of our model is presentedrigure5 (details in Appendi8.1and8.2). Replication
code is available dtttps://github.com/ImperialCollegeLondon/covid19model/releaseshah 0

We fit our model toobserved deathsaccording to ECDC dateom 11 European countries. The
modelled deaths are informebly an infectionto-onsetdistribution (time from infection tdhe onset

of symptoms), a onsetto-death distribution (time fromthe onset ofsymptoms to death), and the
populationaveragedinfection fatality ratio (adjuséd for the agestructure and contact patternof
eachcountry, see Appendix Given these distributions and ratios, modelled deattesafunction of

the number of infections. The modelled number of infections is informed by the serial interval
distribution (theaveragegtime from infection ofone persorto the time at which theynfect another)

and the timevarying reproducttn number. Finally, the tim&arying reproducttn number is a
function of the initial reproducton number before interventionsand the effect sizes from
interventions.
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Figure5: Summary of model components.

Following thehierarchy from bottom to top gives us a full framework to see how interventions affect
infections which can result in deaths. We use Bayesian inference to ensure our modelled deaths can
reproduce the observed deaths as closely as posdibten bottom to top in Figure5, there is an
implicit lag in time that means the effect @&ry recentinterventions manifest weakly in current
deaths (and gestronger as time progresses). To maximise the abilitplserveinterventionimpact

on deaths we fit our model jointly for all 11 European countries, which results in a largesdat®ur

model jointlyestimates the effect sizes of interventions. \WMawve evaluatel the effect of our Bayesian

prior distribution choices and evaluate our Bayesian posterior calibration to ensure our results are
statistically robus{Appendix8.4).
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8 Appendix: Model Specifics, Validation argkensitivity Analysis
8.1 Death model

We observe daily deathi® for daysO' pf8 H and countried N pf8 hD. These daily deaths are
modelled using a positive reallued functioriQ, %Oy that represents the expected number
of deaths attributed to COVHDI. O}, is assumed to follow a negative binomial distribution with

meanQp and variancéQ j; —fi_ where¢ follows a half normal distribution, i.e.

O ID. ACAHOEDR AQ; Qp
CDOT OlaAntv .

The expected number of deati#sin a given country on a given day is a function of the number of
infectionsAoccurring in previous days.

At the beginning of the epidemithe observed deaths in a country candmminated bydeaths that
result from infection that are not locally acquirefio avoiciasing our model by thisve only include
observed deathfrom the day after a&ountry has cumulatively observed @8athsin our model

To mechanistically link our function for deaths to infected cases, we use a previously estimated COVID
19infection-fatality-ratio ifr (probability of death given infectightogether with a distribution of times

from infectionto deatha. Theifr is derived from estimates presented in Verity éf athich assumed
homogeneous attack rates across agreups.To better match estimates of attack rates by age
generated using more detailed information on country and-agecific mixing patterns, wecale

these estimates (the unadjusteft, referred to here ad Fihlfe following ways in previous work

Letc be the number of infections generated in ageup a,0 the underlying size of the population

in that age group and'Y @0 the agegroupspecific attack rate. The adjustéfdis then given

by: Ei £ Ei AAwhere! 'Y lis the predictedattackrate in the 5059 year agegroup after

incorporating countryspecific patterns of contact and mixing. This -ggeup waschosen aghe

referenceas ithad thelowestpredictedlevel of underreportindn previous analyses of tiafrom the
Chinese epidemté. We obtained countnspecific estimates of attack rate by adey , for the 11
European countries in our analysis from a previous study which incorpardemation on contact
between individuals of different ages in countries across Eutdpee then obtained overalifr

estimates for each country adjusting for both demography and-sgecific attack rates.

Using estimated epidemiological information from previous stu@iiésve assume to be the sum of

two independent random times: the incubation period (infection to onset of symptoms or infection
to-onset) distribution and the time between onset of symptoms and death (etsséiath). The
infectionto-onset distributon is Gamma distributed with mean 5.1 days and coefficient of variation
0.86. The onseto-death distribution is also Gamma distributed with a mean of 18.8 days and a
coefficient of variation 0.45i As population averaged over the age structure giveen country. The
infectionto-death distribution is therefore given by:

A DEIE " AT T e ' Al 1 pAgig v
Figure6 shows theinfectionto-death distribution and the resulting survival function that integrates
to the infectionfatality rato.
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Figure6: Left, infectioro-death distribution (mean 23.9 days). Right, survival probability of infected
individuals per day given the infection fatality ratio (1%) andnfectionto-death distribution on
the left.

Using the probability of death distributiothe expected number of deatfR, ,fion a given dag) for
country,l , is given by the following discrete sum:

Qy B wrpA fh
where®j, jis the number ohew infectionson dayz in countryi (see next sectiordnd wheren s

discretized via j 8 gN ZAforO clofB andn ;| A ZA

The number of deaths today is the sum of the pagtctionsweighted by their probability of death,
where the probability of death depends on the number of days since infection.

8.2 Infection model

The true number of infected individuals,is modelled using a discrete renewal process. This approach
has been used imumerous previous studié¥'® and has a strong theoreticdlasis in stochastic
individuatbased counting processes such as Hawkes process and the Belim@process’ ¥ The
renewal modelis related to the SsceptibleiInfectedRecovered model, except the renewal is not
expressed in differential fornT.o model the number dhfectionsover time we need to specify a serial
interval distributionCwith densityC z , (the time betweerwhen a person gets infected anghen

they subsequently infect anothesther peoplg, which wechoose to be Gamma distributed:

CD'QAI I i c.
The serial interval distribution is shown belowFigure7 and is assumed to be the same for all
countries.
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Figure7: Serial interval distributiof with a mean of 6.5 days.

Given the serial interval distribution, the numberinfections®y;, ,pon a given daf)and countryj ,
is given by the following discrete convolution function:

i Id:)ml Inivy . III)H Vol TN TR T T AT IATTII

where, similar to the probability of death function, the daily serial interval is discretized by
Q. 7, 02/kfro i andn | 0z AL

Infectionstoday depend on the number d@ffectionsin the previous days, weighted by the discretized
serial interval distribution. This weighting is then scaled by the cotggegific timevarying
reproduction number,’Y j , that models the average number of secondary infections at a given time.

Thefunctional form for the timevarying reproducttn number was chosen to be as simple as possible

to minimizethe impact of strong prior assumptions: we use a piecewise constant function that scales
Y from a baseline prioiY  and is driven by knowmajor nonpharmaceutical interventions
occurring in different countries and times. We included 6 interventions, one of which is constructed
from the other 5 interventions, which are timings of school and university closures glefi3plating

if ill (k=2), banning of public events (k=3), any government intervention in place (k=4), implementing
a partial or complete lockdown (k=5) and encouraging social distancing and isolation (k=6). We denote
the indicator variable for interventio& ™ plt foft vk by 'Oy, hwhich is 1 if interventiorE is in place
incountryl attmeQ YR n 20KSNBA&ASDP ¢KS O20 NARIFGS alye 3I2¢
if any of the other 5 interventions are in effect, i€ equals 1 at timef any of the interventions

En pltofifv are in effect in countryl at time t and equals O oirwise. Covariate 4 has the
interpretation of indicating the onset of major government intervention. The effect of each
intervention is assumed to be multiplicativ, is therefore a function of thenterventionindicators

"Gy, in place at timedn countryi :
Yy YR A@BPB | O

The exponential form was used to ensure positivity of the reprodactumber,with Y j

constrained to be positive as it appeanstside the exponential. The impact of each intervention on
Y is characterised by a set of parametgrdB h| , with independent priodistributions chosen

to be
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1L DA Al al
The impactg  are shared between all countries and thereforghey are informed by all available
data The prior distribution foly was chosen to be

Yi DOT OI ddifg[s with [ DGT Ol Ama h
Once again[ is the same among all countriesgbareinformation.

We assume that seedingf new infectionsbegins 30 daydefore the day aftera country has
cumulativelyobsened 10 deaths. From this datewe sea our model with 6sequentialdays of
infections drawn fromAy /8 fopx %@ D1 1T A7, Ovkefelzx %@ D1 1 ABi@EThése seed
infectionsareinferred in our Bayesian posteridistribution.

We estimated parameters jointly for all 11 countries in a single hierarchical model. Fitting was done
in the probabilistic programming language Stdnsing an adaptive Hamiltonian Monte Carlo (HMC)
sampler. We ran 8 chains fd000 iterations with2000 iterations of warmup and thinning factor 4

to obtain 2000 posterior samples. Posterior convergence was assessed using the Rhat statistic and by
diagnasing divergent transitions of the HMC sampler. Pposterior calibrations were also performed

(see below).

8.3 Validation

We validate accuracy of point estimates of our model using eraldation. In our crosgalidation
schemewe leave out 3 days of knawdeath data fon-cumulative and fit our model. We forecast
what the model predicts for these three days. We present the individual forecasts for each day, as
well as the average forecast for those three days. drbesvalidationresults are shown in thEigure

8.

3 day forecast - Corr 93% 3 day aggregated forecast - Corr 98%

Predicted
Predicted

T T T T T T T T T T T T T T
1 =] 10 50 100 500 1000 1 S 10 50 100 S00 1000

Observed Observed

Figure8: Crossvalidation results for @lay and 3day aggregated forecasts

Figure 8 provides strong empirical justification for our model specification and mechanism. Our
accurate forecast over a threday time horizon suggests that our fitted estimates gr are
approprige and plausible.

Along with from point estimates we all evaluate our posterior credible intervals using the Rhat
statistic. The Rhat statistic measures whether Markov Chain Monte CarldMCMQ chains have
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converged to the equilibrium distribution (theorrect posteriodistribution). Figure9 shows the Rhat
statistics for all of our parameters

400
|

Count
200
|

! T ! | I T 1
0.998 0.999 1.000 1.001 1.002 1.003 1.004

Rhat Statistic

Figure9: Rhat statistics values close to 1 indicate MCMC convergence

Figure9 indicates that our MCMC have converged. In fitting we also ensured that the MCMC sampler
experienced no divergent transitionsuggesting nongthological posterior topologies.

8.4  Sensitivity Analysis

8.4.1 Forecasting on lotinear scale to assess signal in the data

As we have highlighted throughout in this report, the lag between deathsrdadtionsmeans that

it takes time forinformationto propagatebackwards from deaths tmfections andultimately to"Y .

A conclusion of this report is the prediction oflavging of'Y in response to major interventions. To
gain intuition that this is data driven and not simply a consequence of highly constrained model
assumptionswe showdeathforecastson a loglinear scale. On this scale a line which curves below a
linear trend is indicative of slowing in the growth of the epiderigurel0to Figurel2 show these
forecasts foitaly, Spain and the URheyshow this slowing dowin the daily number of deaths. Our
model suggestthat Italy, a country that has the highest death toll of COWDwill see alowingin

the increase in dailgeaths over the coming weedompared to the early stages of the epidemic
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FigurelO: 7-day-ahead forecast for Italy

Figurell: 7-day-ahead forecast for Spain

Figurel2: 7-day-ahead forecast for the UK
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